Google DeepMind has released SIMA 2 to test how far generalist embodied agents can go inside complex 3D game worlds. SIMA’s (Scalable Instructable Multiworld Agent) new version upgrades the original instruction follower into a Gemini driven system that reasons about goals, explains its plans, and improves from self play in many different environments.
From…
How do you build a single model that can learn physical skills from chaotic real world robot data without relying on simulation? Generalist AI has unveiled GEN-θ, a family of embodied foundation models trained directly on high fidelity raw physical interaction data instead of internet video or simulation. The system is built to establish scaling…
Micromobility solutions—such as delivery robots, mobility scooters, and electric wheelchairs—are rapidly transforming short-distance urban travel. Despite their growing popularity as flexible, eco-friendly transport alternatives, most micromobility devices still rely heavily on human control. This dependence limits operational efficiency and raises safety concerns, especially in complex, crowded city environments filled with dynamic obstacles like pedestrians and…
Estimated reading time: 5 minutes
Introduction
Embodied AI agents are increasingly being called upon to interpret complex, multimodal instructions and act robustly in dynamic environments. ThinkAct, presented by researchers from Nvidia and National Taiwan University, offers a breakthrough for vision-language-action (VLA) reasoning, introducing reinforced visual latent planning to bridge high-level multimodal reasoning…
Can a single AI stack plan like a researcher, reason over scenes, and transfer motions across different robots—without retraining from scratch? Google DeepMind’s Gemini Robotics 1.5 says yes, by splitting embodied intelligence into two models: Gemini Robotics-ER 1.5 for high-level embodied reasoning (spatial understanding, planning, progress/success estimation, tool-use) and Gemini Robotics 1.5 for low-level visuomotor…
What Do We Mean by “Physical AI”?
Artificial intelligence in robotics is not just a matter of clever algorithms. Robots operate in the physical world, and their intelligence emerges from the co-design of body and brain. Physical AI describes this integration, where materials, actuation, sensing, and computation shape how learning policies function. The term was…
In this tutorial, we walk step by step through using Hugging Face’s LeRobot library to train and evaluate a behavior-cloning policy on the PushT dataset. We begin by setting up the environment in Google Colab, installing the required dependencies, and loading the dataset through LeRobot’s unified API. We then design a compact visuomotor policy that…
Robotics and artificial intelligence are converging at an unprecedented pace, driving breakthroughs in automation, perception, and human-machine collaboration. Staying current with these advancements requires following specialized sources that deliver technical depth, research updates, and industry insights. The following list highlights 13 of the most authoritative robotics and AI-focused blogs and websites to track in 2025.
NueGen…
Embodied AI agents that can perceive, think, and act in the real world mark a key step toward the future of robotics. A central challenge is building scalable, reliable robotic manipulation, the skill of deliberately interacting with and controlling objects through selective contact. While progress spans analytic methods, model-based approaches, and large-scale data-driven learning, most…
Nvidia made major waves at SIGGRAPH 2025 by unveiling a suite of new Cosmos world models, robust simulation libraries, and cutting-edge infrastructure—all designed to accelerate the next era of physical AI for robotics, autonomous vehicles, and industrial applications. Let’s break down the technological details, what this means for developers, and why it matters to the…