Skip to content Skip to sidebar Skip to footer

Robotics

Physical AI: Bridging Robotics, Material Science, and Artificial Intelligence for Next-Gen Embodied Systems

What Do We Mean by “Physical AI”? Artificial intelligence in robotics is not just a matter of clever algorithms. Robots operate in the physical world, and their intelligence emerges from the co-design of body and brain. Physical AI describes this integration, where materials, actuation, sensing, and computation shape how learning policies function. The term was…

Read More

A Coding Guide to End-to-End Robotics Learning with LeRobot: Training, Evaluating, and Visualizing Behavior Cloning Policies on PushT

In this tutorial, we walk step by step through using Hugging Face’s LeRobot library to train and evaluate a behavior-cloning policy on the PushT dataset. We begin by setting up the environment in Google Colab, installing the required dependencies, and loading the dataset through LeRobot’s unified API. We then design a compact visuomotor policy that…

Read More

Top 13 Robotics AI Blogs/NewsWebsites 2025

Robotics and artificial intelligence are converging at an unprecedented pace, driving breakthroughs in automation, perception, and human-machine collaboration. Staying current with these advancements requires following specialized sources that deliver technical depth, research updates, and industry insights. The following list highlights 13 of the most authoritative robotics and AI-focused blogs and websites to track in 2025. NueGen…

Read More

Genie Envisioner: A Unified Video-Generative Platform for Scalable, Instruction-Driven Robotic Manipulation

Embodied AI agents that can perceive, think, and act in the real world mark a key step toward the future of robotics. A central challenge is building scalable, reliable robotic manipulation, the skill of deliberately interacting with and controlling objects through selective contact. While progress spans analytic methods, model-based approaches, and large-scale data-driven learning, most…

Read More

NVIDIA AI Introduces End-to-End AI Stack, Cosmos Physical AI Models and New Omniverse Libraries for Advanced Robotics

Nvidia made major waves at SIGGRAPH 2025 by unveiling a suite of new Cosmos world models, robust simulation libraries, and cutting-edge infrastructure—all designed to accelerate the next era of physical AI for robotics, autonomous vehicles, and industrial applications. Let’s break down the technological details, what this means for developers, and why it matters to the…

Read More

NVIDIA AI Team Introduces Jetson Thor: The Ultimate Platform for Physical AI and Next-Gen Robotics

Last week, the NVIDIA robotics team released Jetson Thor that includes Jetson AGX Thor Developer Kit and the Jetson T5000 module, marking a significant milestone for real‑world AI robotics development. Engineered as a supercomputer for physical AI, Jetson Thor brings generative reasoning and multimodal sensor processing to power inference and decision-making at the edge. Architectural…

Read More

Meet DeepFleet: Amazon’s New AI Models Suite that can Predict Future Traffic Patterns for Fleets of Mobile Robots

Amazon has reached a remarkable milestone by deploying its one-millionth robot across global fulfillment and sortation centers, solidifying its position as the world’s largest operator of industrial mobile robotics. This achievement coincides with the launch of DeepFleet, a groundbreaking suite of foundation models designed to enhance coordination among vast fleets of mobile robots. Trained on…

Read More

π0 Released and Open Sourced: A General-Purpose Robotic Foundation Model that could be Fine-Tuned to a Diverse Range of Tasks

Robots are usually unsuitable for altering different tasks and environments. General-purpose models of robots are devised to circumvent this problem. They allow fine-tuning these general-purpose models for a wide scope of robotic tasks. However, it is challenging to maintain the consistency of shared open resources across various platforms. Success in real-world environments is far from…

Read More

Researchers from Stanford and Cornell Introduce APRICOT: A Novel AI Approach that Merges LLM-based Bayesian Active Preference Learning with Constraint-Aware Task Planning

In the rapidly evolving field of household robotics, a significant challenge has emerged in executing personalized organizational tasks, such as arranging groceries in a refrigerator. These tasks require robots to balance user preferences with physical constraints while avoiding collisions and maintaining stability. While Large Language Models (LLMs) enable natural language communication of user preferences, this…

Read More

Google DeepMind Researchers Propose RT-Affordance: A Hierarchical Method that Uses Affordances as an Intermediate Representation for Policies

In recent years, there has been significant development in the field of large pre-trained models for learning robot policies. The term “policy representation” here refers to the different ways of interfacing with the decision-making mechanisms of robots, which can potentially facilitate generalization to new tasks and environments. Vision-language-action (VLA) models are pre-trained with large-scale robot…

Read More